Skip to content

Mikro-Howto: OctoPrint mit RaspberryPI und TouchUI über Elcrow 5" Display steuern

Dies ist nur ein Howto für mich selbst und wen es sonst noch interessiert. Die Anleitung funktioniert mit meinem System, bei anderen Menschen kann das wieder ganz anders sein. Daher: Nachmachen auf eigene Gefahr!

Ausgangslage: Ich möchte meinen 3D Drucker, den ich über den OctoPrint Server, der unter OctoPI auf einem Raspberry PI 3B+ läuft, und somit über jeden vom Server zugelassenen Rechner aus zu steuern ist, notfalls auch mal vor Ort in der Druckerei steuern können, ohne mir dort gleich einen Computer hinstellen zu müssen, der dann die meiste Zeit doch nur als Terminal vor sich hin verstaubt. Was liegt also näher, als die Himbeere mit einem halbwegs bedien- und erkennbaren berührungsempfindlichen Display auszustatten und damit die TouchUI zu bedienen?

Nach diversen Versuchen und Überlegungen bei der Suche nach einer angemessenen Unterbringung für den Rapsberry habe ich mich dann für Thing:2837163 entschieden, für das ein halbwegs finanzierbares Display über Alieexpress zu bekommen ist. Einige Wochen später klingelte denn auch der Bote aus dem fernen Osten und überreichte mir ein gut verpacktes Behältnis mit dem Display, welches bei genauerer Betrachtung einem Waveshare recht ähnlich sieht, jedoch - Chinas kapitalistischer Enklave Shenzen sei Dank - nur einen Teil dessen kostet, was für das nebenan gefertigte Waveshare fällig gewesen wäre und das bei Aliexpress auch deutlich günstiger als beim großen Fluß zu bekommen ist. Allerdings mit 3 Wochen Lieferzeit. Das Boardlayout ebenso wie der Chipsatz sieht dem hochpreisigerem Pendant jedenfalls zum Verwechseln ähnlich.

Was folgte, waren jedoch ein gutes Dutzend Versuche, das Display so zum Laufen zu bekommen, wie ich bzw. das von mir auserkorene Gehäuse das gerne hätte: Nämlich um 180° gedreht, damit der HDMI Connector in der dafür im Gehäusedesign eigens vorgesehenen Aussparung verschwinden kann. Die Anzeige des Displays ist dabei weniger das Problem, diese findet via HDMI statt, vielmehr ist ja Bildausgabe und Toucheingaben zweierlei. Das Display kann leicht um 180° gedreht werden, indem man sich per ssh auf dem Raspberry anmeldet:
ssh pi@octopi.lan

gefolgt von
sudo nano /boot/config.txt

und dann diesen Text am Ende um die Zeile
display_rotate=0

ergänzt. Klappt ganz gut, wenn man dann mit ctrl+x die so manipulierte Datei speichert und mit
sudo reboot -n

einen Neustart einleitet.

Treib(er)jagd
Die oben erwähnten erfolglosen Versuche, auf dem so gedrehten Display nun auch die Touch Eingabe einrichten zu können, hatten mich dann dazu veranlasst, doch mal nebenan, bei Waveshare zu schauen, wie das dort gelöst wurde. Denn die Elcrow KollegInnen wußten zwar von einer veralteten Treiber CD zu berichten und wie man das Display ihrer Ansicht nach zum Kooperieren bewegt, in der Praxis hatte dann trotzdem der Mauszeiger (heißt das auch so, wenn man den Finger dazu benutzt, um Eingaben zu tätigen??) das Gegenteil von den Bewegungen veranstaltet: Nach unten wischen - Zeiger wandert nach oben, nach Rechts wischen - Zeiger begibt sich schnurstracks nach links. Wenn das nur im richtigen Leben auch so wäre...

Wie auch immer: Bei Elcrow ist die Zeit offenbar vor dem Update des Eingabetreibers für den X-Server stehen geblieben, weshalb der entscheidende Hinweis auf die Verwendung des entsprechenden Treibers dort fehlt. Wenn wir schon mal auf der ssh Konsole sind, installieren wir diesen mit
sudo apt install xserver-xorg-input-evdev

Anschließend kopieren wir die Konfigurationsdatei dergestalt, daß sie eine höhere vorangestellte Zahl im Dateinamen hat wie die anderen im Zielverzeichnis. Dies, um zu verhindern, daß ein möglicher anderer Eingabetreiber die Bemühungen, das Touchdisplay einzurichten, verhindert:
sudo cp -rf /usr/share/X11/xorg.conf.d/10-evdev.conf /usr/share/X11/xorg.conf.d/45-evdev.conf
sudo reboot

Neuausrichtung
Nun lässt sich auch die Feinabstimmung mittels Eingabekalibration vornehmen. Dazu installieren wir das entsprechende Tool, wir nehmen dabei das der aktuellen Raspbian Version, somit gibt das bei späteren Updates auch weniger Treiberfolklore...:
sudo dpkg -i -B xinput-calibrator

Wir starten jetzt das System dazu nochmals neu, damit die Kalibrierung gestützt auf diese Treiber stattfindet. Nach dem erfolgreichen Login gehen wir dazu in der grafischen Benutzeroberfläche mit der Maus / Touchpen / Zeige- oder sonst einem Finger auf die Himbeere oben links und rufen unter "Einstellungen" das Kalibriertool auf. Mit dem entsprechenden Zeigegerät tippen wir auf die darin gezeigten 4 Punkte und Kopieren den anschließend ausgegebenen Text in die Datei
/ect/X11/xorg.conf.d/99-calibration.conf

Bei mir steht folgendes darin (Die diversen Optionen für die Einträge gibt es z.B. hier zur Auswahl. Auch ein Hersteller von 5" Displays ;-):
Section "InputClass"
        Identifier      "calibration"
        MatchProduct    "ADS7846 Touchscreen"
        Option  "Calibration"   "3905 208 3910 288"
        Option  "SwapAxes"      "0"
EndSection

Abspeichern wie gehabt, neu booten. Nun sollte das System zügig starten und auf Benutzereingaben entsprechend reagieren.

Das erfreut uns, weshalb wir derartig motiviert sogleich zur Installation der Touch Oberfläche von OctoPrint schreiten. Hier hat der User jdufresne1 alles wichtige in seinem Beitrag ausgeführt, weshalb ich nur noch kurz darauf eingehe. Wieder per ssh auf dem Druckserver einloggen. Dann mit:
sudo apt install chromium-browser -y

den Browser für die Touch Oberfläche installieren. In dessen Fenster läuft zukünftig dann alles rund um die Bedienung des Druckservers ab. Anschließend daran laden wir die Autostart Prozedur von TouchUI herunter und machen in einem Abwasch die lokale Installation auf dem Raspberry startklar:
git clone https://github.com/BillyBlaze/OctoPrint-TouchUI-autostart.git ~/TouchUI-autostart/

Noch kurz diverse Einstellungen und Hilfstools installieren:
sudo ~/TouchUI-autostart/helpers/install

Nach einem Neustart sollte nun die TouchUI Oberfläche den 5" Bildschirm des Raspberry verzieren. Wer möchte, kann den Raspberry auch so einrichten, daß er ohne Benutzername und Passwort durchstartet. Mehr dazu im Wiki von TouchUI.

Der Vorteil des eingangs erwähnten Gehäuses ist, daß es genügend Platz bietet, zum Beispiel für ein Stepdown Modul, um die Energieversorgung des Rechners zukünftig vom nicht ausgelasteten Netzteil des Druckers sicherzustellen sowie für einen entsprechenden Lüfter. Falls es doch mal heißer her geht.

Irgendwie muss ich das alles finanzieren, daher sind die allermeisten Links Affiliate. D.h.:Solltet Ihr über diese Links zu einem Onlinehändler geraten und dort etwas bestellen, bekomme ich eine kleine Provision, für Euch ändert das am Preis natürlich nichts. Für die Inspirationen geht ein herzliches Dankeschön an die genannten Personen, insbesondere an die OctoPrint Community!

Keep on Coding Printing!

Diverser Tüddelkram zu Marlin

Noch ein kleiner Merkzettel für mich und wer es sonst noch brauchen kann, wie man jeden 3D Drucker den AnyCube i3 MEGA ein bisschen tieferlegt genauer einstellt.

  • Neben der richtigen Temperatur ist auch das Kalibrieren der Maße, die der Drucker fabriziert, wichtig. Wie man die Kalibrierergebnisse in Richtung dauerhafter Korrektur des Bettlevelings verarbeitet, verraten die Plastikjunies.

  • Zum Anschauen: Ein G29 Plotter, der die Ergebnisse einer Bettkalibrierung grafisch aufbereitet.

  • Ebenfalls wichtig ist das "PID Tuning", um konstante Temperaturen im Extruder bzw. Hotbed zu bekommen. Hier gibt es eine ausführliche Anleitung bei 3d Drucktipps. In dem Zusammenhang ist auch der Tipp von Panduin super.

  • Grundlagenarbeit: Es muss nicht gleich in 1st Layer Porn ausarten, trotzdem: Die Verbindung der 1. Drucklage zum Druckbett ist für die Haftung des Druckes entscheidend. Hier gibt es Tipps für die Einstellung mit dem Slicer Simplify3D.

  • Troubleshooting: Die Übersicht über diverse Fehler beim Drucken ist bei Simplify3D in Englisch sehr hilfreich.

  • Mit
    curl -k -H "X-Api-Key: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" -F "select=false" -F "print=false" -F "file=@[output_filepath]" "http://IPADDRESS:PORT/api/files/local" {STRIP "; postProcessing"} 
    kann direkt aus Simplify3D auf den OctoPrint Server gedruckt werden. Dabei sind natürlich der API Key statt den "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" einzufügen, ebenso die URL, unter der OctoPrint erreichbar ist. Wenn man bei "select" und / oder "print" statt "false" den Wert "true" angibt, druckt Octoprint automatisch los. Nicht ändern sollte man die Variable hinter "file" 8-)

  • Flusskontrolle: "Viele quälen sich unnötig lange durch unzählige Versuche, die richtige Einstellung für die Fördermenge (den so genannten “Flow–) ohne Extruder kalibrieren im Slicer einzustellen und stoßen dann trotzdem immer wieder auf das Problem der “over-extrusion– oder “under-extrusion–." Hier gibt es eine Schritt für Schritt Anleitung, mit deren Hilfe sich auch dieses (mögliche) Problem lösen lässt.

  • Zum auswendig Lernen: Der komplette Befehlssatz unter Marlin.

  • TBC...

Zu meinem YouTube Kanal, mit aktuellen Drucken.

AnyCubic i3 MEGA unter Marlin mit dem BLTouch leveln

The better the Leveling the better the Print:
Mal eben eine neue Ladeschale und Halterung für das Telefon ausgedruckt
Träger: Bowden X-Carriage for AnyCubic i3 MEGA by Audisis
Am leuchten ist der BLTouch
Mal ein kleiner Merkzettel für mich und wer es sonst noch brauchen kann, wie man den AnyCube i3 MEGA unter Marlin mit dem BLTouch oder einem der günstigeren Kopien mittels G- und M- Befehlen die Druckdüse in einen definierten Abstand zum Druckbett bringt, auf deutsch: levelt. Eingaben sind Rot, Kommentare hinter dem Semikolon nicht eingeben. Ich habe die Ausgaben auf das Wesentliche gekürzt. Vorab: Das Z-Probe Offset bedeutet die Differenz zwischen Auslösepunkt des BL Touch und der Düsenspitze.
Send: M851 ; Z Probe Offset anzeigen lassen
Recv: echo:Probe Z Offset: -2.02
Recv: ok
[...]
Send: M851 Z0 ; Z Probe Offset auf Null setzen
Recv: ok
[...]
Send: G28 ; Nullpunkt anfahren
[...]
Recv: echo:busy: processing
Recv: X:-5.00 Y:0.00 Z:0.00 E:0.00 Count X:-400 Y:0 Z:0
Recv: ok
[...]
Send: G1 Z1 X110 Y110 F2000 ; In die Mitte des Druckbettes fahren
Recv: ok
[...]
Send: G92 Z0 ;
Recv: X:110.00 Y:110.00 Z:0.00 E:0.00 Count X:8800 Y:8800 Z:0
Recv: ok
[...]
Send: G30 X110 Y110
[...]
Recv: Bed X: 110.00 Y: 110.00 Z: 2.08
Recv: X:77.00 Y:105.00 Z:10.00 E:0.00 Count X:6160 Y:8400 Z:4000
Recv: ok
[...]
Recv: ok
[...]
Send: G1Z-0.1 ; Bis 0.05mm / ein Kassenbon zwischen Düsenspitze und Bett passt. BTW: Ich empfehle als Metaller natürlich, eine Fühlerlehre, kann man auch für andere Sachen verwenden.
Recv: ok
[...]
Send: G1Z-0.1 ; Bis 0.05mm / ein Kassenbon zwischen Düsenspitze und Bett passt.
Recv: ok
[...]
Send: G1Z-0.1 ; Bis 0.05mm / ein Kassenbon zwischen Düsenspitze und Bett passt.
[...]
Send: G92 Z0 ; Neuer Nullpunkt an diese Stelle setzen
Recv: X:110.00 Y:110.00 Z:0.00 E:0.00 Count X:8800 Y:8800 Z:0
Recv: ok
[...]
Send: G30 X110 Y110 ; Offset ausgeben. Wert bei der 1. Z-Anzeige (hier in GRÜN angezeigt) merken
[...]
Recv: echo:busy: processing
Recv: Bed X: 110.00 Y: 110.00 Z: 2.08 ; Diesen Z-Wert merken!
Recv: X:77.00 Y:105.00 Z:10.00 E:0.00 Count X:6160 Y:8400 Z:4000
Recv: ok
[...]
Send: M851 Z-2.08 ; Neues Offset eingeben mit dem eben gemerkten Z-Weŕt
Recv: ok
[...]
Send: M500 ; Den Wert ins EEPROM speichern
Recv: echo:Settings Stored (731 bytes; crc 34074)
Recv: ok

Am besten mal den Drucker neu starten um 100% sicher zu gehen, daß er sich die neuen Offset Werte gemerkt hat. Anschließend mache ich 2-3 Kalibrierzyklen mit G28 / G29 und speichere die Werte im EEPROM mit M500:
Recv: Bilinear Leveling Grid:
Recv: 0 1 2 3 4
Recv: 0 +0.010 -0.020 -0.033 -0.020 +0.027
Recv: 1 +0.058 +0.023 +0.015 +0.040 +0.090
Recv: 2 +0.082 +0.040 +0.027 +0.058 +0.108
Recv: 3 +0.082 +0.053 +0.027 +0.065 +0.095
Recv: 4 +0.058 +0.010 -0.020 +0.003 +0.045
Recv:
Recv: X:164.00 Y:193.00 Z:12.06 E:0.00 Count X:13120 Y:15440 Z:4832
Send: M140 S0
Recv: ok
Send: M500
Recv: echo:Settings Stored (731 bytes; crc 9049)
Recv: ok

Der 2. Zyklus macht nochmal deutlich, daß mehrfache Kalibrierung nicht schadet:
Recv: Bilinear Leveling Grid:
Recv: 0 1 2 3 4
Recv: 0 +0.020 -0.017 -0.030 -0.025 +0.038
Recv: 1 +0.063 +0.038 +0.007 +0.055 +0.092
Recv: 2 +0.098 +0.043 +0.043 +0.063 +0.118
Recv: 3 +0.092 +0.055 +0.030 +0.075 +0.098
Recv: 4 +0.063 +0.013 -0.017 +0.013 +0.043
Recv:
Recv: X:164.00 Y:193.00 Z:12.06 E:0.00 Count X:13120 Y:15440 Z:4832
Send: M140 S0
Recv: ok
[...]
Send: M500
Recv: echo:Settings Stored (731 bytes; crc 34326)
Recv: ok
[...]

Das sollte dann aber auch reichen, denn "wer viel misst, misst Mist". ;-) Ich übermittle dem Drucker dann vor jedem Druck die neuen Einstellungen, die er dann entsprechend mit dem Druckauftrag verrechnet. Da ich immer über octoprint drucke, sieht das bei mir so aus:
G21 ; Wir verwenden Millimeter
G90 ; Absolute Positionierung...
M82 ; ... auch für den Steppermotor am Extruder
M107 ; Lüfter aus
G28 X0 Y0 ; Referenzpunkte XY anfahren
G28 Z0 ; Referenzfahrt auch für Z
G1 Z15.0 F{travelspeed} Z Achse 15 mm anheben
G92 E0 ; Extruder auf 0 setzen
G1 F200 E3 ; Extruder soll eine 3mm lange Wurst auspressen
G1 E0 ; und stoppen...
G1 F{travelspeed} ;
G28; Nullpunkte / Home anfahren
G29; Auto Bed Levelling (ABL) anwerfen
M500; Werte in Firmware / EEPROM speichern
M420 S1; BLTouch aktivieren

Es geht natürlich auch ohne octoprint, falls man direkt vom Slicer aus druckt. Auf jeden Fall sollte man sich für eine Methode entscheiden, nicht, daß nachher 2x gelevelt wird...

HINWEIS:
Alle gemachten Angaben sind ohne Gewähr auf Funktion und Richtigkeit. Für eventuell entstehende Schäden übernehmen wir keinerlei Haftung. Sämtliche Veränderungen geschehen auf Eure Verantwortung und Gefahr.

Irgendwie muss ich das alles finanzieren, daher sind die allermeisten Links Affiliate. D.h.: Solltet Ihr über diese Links zu einem Onlinehändler geraten und dort etwas bestellen, bekomme ich eine kleine Provision, für Euch ändert das am Preis natürlich nichts. Für die Inspirationen geht ein herzliches Dankeschön an die genannten Personen, insbesondere an die OctoPrint Community!

Keep on Coding Printing!

Einen Blick auf Klipper riskieren

Screenshot
Ich habe das schlechte Wetter heute genutzt, um ein wenig mit der Firmware des AnyCubic i3 MEGA herum zu spielen. Normalerweise läuft hier Marlin, mich hatte aber interessiert, was hinter dem OctoPrint Plugin OctoKlipper steckt. Man muss ja elastisch bleiben. Dabei kam heraus, daß mit Klipper eine weitere Möglichkeit zur Steuerung der Druckerei besteht. Mindestens genau so frickelig wie Marlin, das Display des Druckers wird (leider) gar nicht unterstützt, auch sonst muss man sich halbwegs ordentlich einlesen, um den Drucker überhaupt in Betrieb nehmen zu können. Das ist auch gut so, denn nur so lassen sich Schäden am Drucker oder Druckgut oder schlimmer: an Leib und Leben verhindern.

Grob gesagt unterscheidet Klipper sich von Marlin darin, daß nur ein kleiner Bootloader auf dem Drucker selber verbleibt, der dann mit dem Hostrechner - zum Beispiel einem RaspBerry PI kommuniziert und diesem die ganze Rechenarbeit überlässt. Diese Arbeit stellt die Himbeere vor keine besonders großen Herausforderungen, trotzdem sollte man möglichst zum RaspBerry Pi 3B+ greifen. Zur Installation verweise ich mal auf das Tutorial bei selbstgedruckt.de, die Menschen dort beteiligen sich auch rege in einem deutschsprachigen Fratzenbuch Forum.

Für den AnyCubic i3 Mega habe ich als Einstieg zwar die entsprechende Beispielkonfigurationsdatei auf github verwendet, da unser Drucker jedoch wegen ungebührlichen Lärmens zu einem Austausch der Lüfter (Noctua NF-A4x10 FLX 40mm zur Kühlung von Hotend und der Treiber über den Lüftungskanal hier auf thingiverse und Noctua NF-A9x14 Lüfter für das Netzteil sowie Sunon MF50151VX-A99 Radiallüfter zur Bauteilkühlung) und der Steppertreiber auf TMC2208 V1.2 verdonnert wurde, mussten die Achsen der Steppermotoren invertiert werden. Es gibt u.a. auch in der FAQ zu Klipper den Hinweis, daß die TMCs mitten im Druck aussteigen können. Das ist wohl vor allem dann der Fall, wenn die Geschwindigkeit der Achsen zu sehr hoch gesetzt wurden. (Es soll ja Leute geben, die unter Klipper mit 100mm/sec statt mit 60mm/sec drucken, tstststss...)

Bislang konnte ich derartiges Verhalten bei uns nicht beobachten. Mit der in diesen Tagen erscheinenden neuen Klipper Version sollen jedoch wohl auch diese Problem gelöst sein.

Wie auch immer: Erwähnenswert ist, daß diverse G-Code Variablen zu seltsamem Verhalten führen können. Das betrifft jedoch meistens Start- oder Endcodes sowie diverse Plugins von OctoPrint, die z.B. mit G117 eine Bildschirmausgabe erzeugen wollen.

Ein Switchen zwischen Marlin und Klipper ist problemlos möglich und in 5 Minuten bewerkstelligt, falls mal etwas nicht so klappt, wie es soll. Ich schließe zur Installation von Marlin über die Arduino IDE den ausgeschalteten Drucker via USB an meinen Rechner an, starte die Arduino IDE und wähle kompilieren / hochladen, nachdem ich den Drucker eingeschaltet habe. Das bügelt alles von Klipper weg.

Umgekehrt installiere ich Klipper, indem ich mich als pi per ssh auf dem OctoPI/OctoPrint Server anmelde, mit

cd ~/Klipper

ins Klipper Verzeichnis wechsle und dann erst mal herausfinde, auf welchem USB Port denn der jetzt am OctoPI angeschlossene Drucker lauscht. Dazu

ls -l /dev/serial/by-id/

eingeben, den ausgegebenen Port merken und dann beherzt den Klipper Bootloader mit

make flash FLASH_DEVICE=/dev/gemerkterPort

auf den Drucker kopieren. Dazu sollte man beachten, daß der Drucker nicht mit OctoPrint verbunden ist. Am besten danach rebooten, dann klappt das mit dem Drucken. ;-)

Hier noch mein config File für den AnyCubic i3 MEGA mit TNC2208 V1.2, und 8 Bit Board sowie Ultrabase. Die Achsen sind in der Firmware bereits invertiert, dazu ist das "!" vor den jeweiligen dir_pin gesetzt bzw. entfernt. Die Angaben für das PID Tuning beziehen sich auf meinen Drucker, bei anderen sollte das PID über das OctoKlipper Plugin gemacht werden. In Ergänzung zur Standard Config befindet sich ein Teil zur Regelung der Temperaturtoleranzen, ohne die mein Drucker nach wenigen Layern gleich ausgestiegen ist, die ich 1:1 aus der examples-extras.cfg Datei von Klipper entnommen habe. Noch nicht gekümmert habe ich mich um die anderen Gründe, warum ich mal einen Blick auf Klipper riskiere wie schnelleres und noch schöneres Drucken, schnellere Filamentförderung - Stichwort "pressure advance", Kaffee kochen und die Wäsche waschen...

# Anpassung der Pin Mappings für den AnyCubic i3 MEGA, TMC2208 und Ultrabase 
#
# Verwendung auf eigene Gefahr! Code kopieren und in octopi.url#conf einfügen
# 12 / 12 / 2018 thomas@trueten.de still under developement
#
# https://www.trueten.de/permalink/Einen-Blick-auf-Klipper-riskieren.html
#
#
# This file contains pin mappings for the Anycubic i3 Mega with
# Ultrabase from 2017. (This config may work on an Anycubic i3 Mega v1
# prior to the Ultrabase if you comment out the definition of the
# endstop_pin in the stepper_z1 section.) To use this config, the
# firmware should be compiled for the AVR atmega2560.
# See the example.cfg file for a description of available parameters.

[stepper_x]
step_pin: ar54
dir_pin: ar55
enable_pin: !ar38
step_distance: .0125
endstop_pin: ^!ar3
position_min: -5
position_endstop: -5
position_max: 210
homing_speed: 30.0

[stepper_y]
step_pin: ar60
dir_pin: !ar61
enable_pin: !ar56
step_distance: .0125
endstop_pin: ^!ar42
position_endstop: 0
position_max: 210
homing_speed: 30.0

[stepper_z]
step_pin: ar46
dir_pin: !ar48
enable_pin: !ar62
step_distance: .0025
endstop_pin: ^!ar18
position_endstop: 0.0
position_max: 205
homing_speed: 5.0

[stepper_z1]
step_pin: ar36
dir_pin: !ar34
enable_pin: !ar30
step_distance: .0025
endstop_pin: ^!ar43

[extruder]
step_pin: ar26
dir_pin: !ar28
enable_pin: !ar24
step_distance: .010799
nozzle_diameter: 0.400
filament_diameter: 1.750
heater_pin: ar10
sensor_type: ATC Semitec 104GT-2
sensor_pin: analog13
control: pid
min_temp: 0
max_temp: 260
min_extrude_temp: 170

[heater_fan extruder_fan]
pin: ar44

[heater_bed]
heater_pin: ar8
sensor_type: EPCOS 100K B57560G104F
sensor_pin: analog14
control: pid
pid_Kp: 74.883
pid_Ki: 1.809
pid_Kd: 775.038
min_temp: 0
max_temp: 110

[verify_heater extruder]
heating_gain: 2
check_gain_time: 20
hysteresis: 5
max_error: 120

[fan]
pin: ar9

[mcu]
serial: /dev/ttyUSB0
pin_map: arduino

[printer]
kinematics: cartesian
max_velocity: 300
max_accel: 3000
max_z_velocity: 10
max_z_accel: 60

[heater_fan stepstick_fan]
pin: ar7

# Define the BLTouch servo
[servo bltouch]
pin: ar11
maximum_servo_angle: 180
minimum_pulse_width: 0.0006
maximum_pulse_width: 0.0024

# Define a probe using the BLTouch
[probe]
pin: ar2
x_offset: 26.0
y_offset: 0.0
z_offset: -1.7
activate_gcode:
    SET_SERVO SERVO=bltouch ANGLE=10
    SET_SERVO SERVO=bltouch ANGLE=60
    G4 P200
deactivate_gcode:
    SET_SERVO SERVO=bltouch ANGLE=90
    G4 P100

# Mesh Bed Leveling. One may define a [bed_mesh] config section
# to enable move transformations that offset the z axis based
# on a mesh generated from probed points. Note that bed_mesh
# and bed_tilt are incompatible, both cannot be defined.
[bed_mesh]
speed: 50
#   The speed (in mm/s) of non-probing moves during the
#   calibration. The default is 50.
horizontal_move_z: 5
#   The height (in mm) that the head should be commanded to move to
#   just prior to starting a probe operation. The default is 5.
samples: 1
#   The number of times to probe each point.  The probed z-values
#   will be averaged.  The default is to probe 1 time.
sample_retract_dist: 2.0
#   The distance (in mm) to retract between each sample if
#   sampling more than once.  Default is 2mm.
min_point: 19,32
#min_point: 0,32
#   An X,Y point defining the minimum coordinate to probe on
#   the bed. Note that this refers to the nozzle position,
#   and take care that you do not define a point that will move
#   the probe off of the bed. This parameter must be provided.
max_point: 199,212
#max_point: 175,198
#   An X,Y point defining the maximum coordinate to probe on
#   the bed. Follow the same precautions as listed in min_point.
#   Also note that this does not necessarily define the last point
#   probed, only the maximum coordinate. This parameter must be provided.
probe_count: 5,5
#   A comma separated pair of integer values (X,Y) defining the number
#   of points to probe along each axis. A single value is also valid,
#   in which case that value will be for both axes. Default is 3,3
#   which probes a 3x3 grid.
#fade_start: 1.0
#   The z-axis position in which to start phasing z-adjustment out.
#   Default is 1.0.
#fade_end: 0.0
#   The gcode z position in which phasing out completes.  When set
#   to a value below fade_start, fade is disabled. It should be
#   noted that fade may add unwanted scaling along the z-axis of a
#   print.  If a user wishes to enable fade, a value of 10.0 is
#   recommended. Default is 0.0, which disables fade.
#fade_target:
#   The z position in which fade should converge. When this value is set
#   to a non-zero value it must be within the range of z-values in the mesh.
#   Users that wish to converge to the z homing position should set this to 0.
#   Default is the average z value of the mesh.
#split_delta_z: .025
#   The amount of Z difference (in mm) along a move that will
#   trigger a split. Default is .025.
#move_check_distance: 5.0
#   The distance (in mm) along a move to check for split_delta_z.
#   This is also the minimum length that a move can be split. Default
#   is 5.0.
#mesh_pps: 2,2
#   A comma separated pair of integers (X,Y) defining the number of
#   points per segment to interpolate in the mesh along each axis. A
#   "segment" can be defined as the space between each probed
#   point. The user may enter a single value which will be applied
#   to both axes.  Default is 2,2.
#algorithm: lagrange
#   The interpolation algorthm to use. May be either "langrange"
#   or "bicubic". This option will not affect 3x3 grids, which
#   are forced to use lagrange sampling.  Default is lagrange.
#bicubic_tension: .2
#   When using the bicubic algoritm the tension parameter above
#   may be applied to change the amount of slope interpolated.
#   Larger numbers will increase the amount of slope, which
#   results in more curvature in the mesh. Default is .2.

#*# <---------------------- SAVE_CONFIG ---------------------->
#*# DO NOT EDIT THIS BLOCK OR BELOW. The contents are auto-generated.
#*#
#*# [extruder]
#*# pid_kp = 18.387
#*# pid_ki = 0.936
#*# pid_kd = 90.325


HINWEIS:
Alle gemachten Angaben sind ohne Gewähr auf Funktion und Richtigkeit. Für eventuell entstehende Schäden übernehmen wir keinerlei Haftung. Sämtliche Veränderungen geschehen auf Eure Verantwortung und Gefahr.

Das Tutorial ist für das AnyCubic i3 MEGA Board verfasst worden. Bei anderen Boards und Herstellern bitte auf die aktuelle Beschreibung / Installationsanweisung auf https://github.com/KevinOConnor/klipper achten!

Irgendwie muss ich das alles finanzieren, daher sind die allermeisten Links Affiliate. D.h.: Solltet Ihr über diese Links zu einem Onlinehändler geraten und dort etwas bestellen, bekomme ich eine kleine Provision, für Euch ändert das am Preis natürlich nichts. Für die Inspirationen geht ein herzliches Dankeschön an die genannten Personen, insbesondere an die OctoPrint Community!

Keep on Coding Printing!
cronjob